WEDOLIT FW 3500

Water-soluble, fully synthetic, good material compatibility

WEDOLIT FW 3500 is a high-pressure agent for hydroformingprocesses such as internal and external high pressure forming of steel plates, with different surface qualities and thicknesses. The product can also be applied in different grinding and cooling operations.

Approved by "FF Fluid Forming"

Physical Properties Typical Data

Concentrate

				Danaity at 2000		C	
Mineral oil content		Viscosity at 20°C: ASTM D 7042		Density at 20°C: ASTM D 7042		Copper corrosion: DIN 51759-1	
Free		4.7 mm²/s		1.05		Not determined*	
5% Solution							
pH-value (tap water)		Corrosion protection DIN 51360-2		Refractometer factor (brix)		Conductivity (Deionised water)	
sh 9.6		5 % grade 0		2.2		Not determined	
P-additives	Ch	orine Boror		n Amines			FAD
-		-	+		+		+
-	Free pH-value (tap wate 9.6	Free pH-value (tap water) 9.6	Free 4.7 m pH-value Corro (tap water) DIN 51 9.6 5 % gr	Free 4.7 mm²/s pH-value (tap water) Corrosion protection DIN 51360-2 9.6 5 % grade 0 P-additives Chlorine	Free 4.7 mm²/s pH-value (tap water) Corrosion protection DIN 51360-2 Refra fac 9.6 5 % grade 0 P-additives Chlorine Boron	Free 4.7 mm²/s 1.05 pH-value (tap water) Corrosion protection DIN 51360-2 Refractometer factor (brix) 9.6 5 % grade 0 2.2 P-additives Chlorine Boron Amines	Free 4.7 mm²/s 1.05 No pH-value (tap water) Corrosion protection DIN 51360-2 Refractometer factor (brix) (December of the second (December of the second

*Discolourations of non-ferrous metals should be examined in preliminary tests

Application Guidelines

The preparation of the solution is carried out by slowly adding the concentrate into water (drinking water quality) under thorough stirring. A more homogenous product is achieved by the use of automatic mixing systems.

Storage must be frost-free between 5 - 40°C. The minimum durability is 12 months in an original sealed package.

Additional Information

The information herein is given in good faith and believed current as of the date of publication and should apply to the current formula version. Because conditions of use are beyond our control, no guarantee, representation or warranty expressed or implied is made. Consult Master Fluid Solutions for further information. For the most recent version of this document, please go to this URL: https://2trim.us/diw/?plr=FW-3500*en*eu

WEDOLiT FW 3500 ©2014-2024 Master Fluid Solutions[™] | 2024-04-19

Choose WEDOLiT FW 3500:

- Offers very good high-pressure properties
- Contributes to a high tool life
- Very good application stability
- Almost free of foam
- Offers very good skin compatibility

Recommended mixing ratio

- Hydrofroming: from 5 10%
- Grinding: from 3 6%

Health and Safety

For further information, see the most recent SDS which is available directly from Master Fluid Solutions.

> Hasselsstraße 6-14 Düsseldorf, 40597 Germany +49 211 41 72 81 00

info-eu@masterfluids.com

masterfluids.com/eu/en/